

Gayatri Vidya Parishad College of Engineering for Women (Autonomous) Madhurawada, Visakhapatnam

Department of Electrical and Electronics Engineering I B.Tech II Semester – Regular Examinations, Jun -2025 Electrical Circuit - 1

SCHEME OF VALUATION

Q.No	Question
1.a)	Loop equation -1>2M
	Loop equation -2>2M
	Loop equation -3>2M
	$I_1 = 3.3 \text{ Å}$
1.b)	Node equation -1>2M
	Node equation -2>2M
	$V_1 = 6.44 \text{ V}$ > 1M
	$V_2 = 8.889 \text{ V}$ >1M
	$V_{4 \text{ ohm}} = 7.11 \text{ V}$ >1M
2.a)	Delta – Star conversion R = 10/3 ohm>2M
	Equivalent circuit after conversion>2M
	Equivalent after series / parallel reduction>2M
	Equivalent resistance Req = 13.87 ohm>2M
2.b)	Node equation -1>2M
	Node equation -2>2M
	Node equation -3>1M
	$V_1 = 8.063 \text{ V}, V_2 = 10.2 \text{ V}, V_3 = 3.06 \text{ V}>2\text{M}$
3. a)	Voltage Equation (V) = $5 \sin(wt)$ >2M
3. u _j	Time period (T) = π >1M
	Average Value (Vavg) = $10/\pi$ V>2M
	RMS value (V_{RMS}) = 3.535 V>2M
3.b)	Circuit Diagram>1M
3.17)	Branch currents $I_1 = 7.66$ [-45 A & $I_2 = 5.11$ [-30 A>2M
	Total current (I) = 12.66 [-39 A>2M
	Power factor = 0.7772M
4.a)	Average value>2M
4. a)	RMS value2M
	Form Factor>2M
	Peak Factor>1M
4.b)	Current = 23 [-36.86 A>2M
	Power factor = 0.8 lag>2M
	Reactive power = 3173.2688 VAR>1M
	Total volt- amp = 5290 [-36.86>2M
5.a)	Current due to 200 V source $I_1 = 1.65 \text{ A}$ >3M
J.u,	Current due to 20 A source $I_1 = 9.58 \text{ A}$
	Current in 23ohm resistance = 11.232 A>1M
5.b)	Compensation Theorem statement>3M
	Compensation Voltage calculation> 1M
	Procedure to apply compensation theorem with example>3M
(a)	V _{TH} calculation = 0.9527 V>3M
6.a)	R_{TH} Calculation = 23.8 ohm> 2M
(l-)	The venin's equivalent and current in 50 ohm = 0.0129 A>2M
6. b)	Maximum power transfer Theorem statement>3M Current equation>1M
	Current equation
	Condition for maximum power transfer>2M
	Condition for maximum power transfer

7.a)	Resonance Frequency derivation>3M
	Impedance at resonance Zmin = R2M
	Current at resonance Imax = V/R >2M
7.b)	Current Expression>2M
	Current locus diagram>2M
	Circle equation>3M
8.a)	Resonance frequency (F _r) definition>2M
	Bandwidth (BW) definition> 2M
	Quality factor (Q) definition>2M
	$F_r = BW * Q$ >1M
8.b)	Current Expression>3M
	Current for Various resistance>2M
	Current locus diagram>2M
9.a)	Self-inductance L1 = 0.028 H>2M
	Self-inductance L2 = 0.226 H>1M
	Coefficient of coupling k = 0.625>2M
	Mutual Inductance M = 0.0497 H>2M
9.b)	Tree diagram>2M
	Fundamental loops> 2M
	Tie-Set Matrix> 3M
10. a)	Coefficient of coupling $k = 0.707$ >3M
	Loop equation - 1> 2M
	Loop equation - 2> 2M
10.b)	Tree diagram>2M
	Fundamental Cuts> 2M
	Cut-Set Matrix> 3M

proposed by Or M. Knishne April-prof Rept of EET